
Housing Solutions
Mobile Application

Technical Specification

May 2021

Prepared by

Kristofor Slattery, Engineering Manager

Contents

1. About this document
1.1. Version history & stakeholders
1.2. Ubiquitous language
1.3. Technology stack
1.4. Target devices and viewports
1.5. Operating system versions
1.6. Testing
1.7. Accessibility

2. App stores & deployment
3. API’s
4. Screens & Features

4.1. Core elements
4.2. Login / Forgotten Password
4.3. Sign up / Register
4.4. Splash / Load Screen
4.5. Home Screen (dashboard)
4.6. News & Media feed
4.7. Rent Transactions (Payment history)
4.8. Make a payment
4.9. Repairs Diagnosis

4.9.1. AI image diagnosis
4.9.2. Edison (Speech recognition AI)
4.9.3. Traditional diagnosis method

4.10. Scheduling a repair
4.11. Forms

4.11.1. Feedback
4.12. Web chat Screen
4.13. Message centre Screen

5. SQLite Database
5.1. Table structure

5.1.1. System settings
5.1.2. Tenant
5.1.3. Transactions
5.1.4. Repairs history
5.1.5. Message centre

5.2. Field encryption
6. Wifi / internet connection
7. Push Notifications

7.1. Push notification workflow
7.2. Umbraco push notification tool
7.3. Push notification types
7.4. Member groups & distribution

7.5. Event triggers
8. Payment gateway
9. Message Centre

9.1. Active threads
9.2. Archived threads

10. Web Chat

1. About this document
Throughout various sections of this document you will find icons highlighting key
dependencies of specific functionality. For example, when we talk about logging into the
application the following icons will appear at the top of the section…

Icon Description

SQLite database - information is stored in a local SQL database for offline use
and long term state management

API - Connection to a specific API is required in order for the screen to function
correctly. There is a direct dependency on data from Umbraco or a third party
housing API such as Capita open housing

Wifi Required - Wifi connection is required to use feature

Web View - Content on the screen is IFramed in using a web view control. This
will be the case for Umbraco forms or web chat

1.1 Version history & stakeholders

Version Date Author Changes

v1.0 30/05/2021 Kris Slattery First draft of specification

Stakeholders

Name Title / Company

Rich Harvey Housing Solutions

Sam Denslow Housing Solutions

Andy Whyte Housing Solutions

Amanda Stockhill Housing Solutions

Laurence Earl Prodo Digital

Jenny Bradshaw Prodo Digital

Josh Hughes Prodo Digital

Kris Slattery Prodo Digital

1.2 Ubiquitous language
Simulator/Emulator - A software image of a physical device which is run on a PC or Mac
which mirrors the device functionality and behaviour without the need for a physical device

SQLite database - local data storage for the application to persist information across
shutdowns and thread closes.

API - Application Programming Interface, a web based service which allows our application
to read /write data to and from 3rd party systems.

Web View - A react native component that allows us to embed a HTML web browser into an
application screen. This shares similarity to web page IFrames.

Target Devices - All of the smartphone models that the application will be compatible with.

Viewport - a frame area on the smartphone screen which has a software pixel height and
width.

Operating system - this refers to either IOS or Android operating systems

Encryption - The process of converting information into a format which obfuscates the
original content.

Decryption - The process of reverting an encrypted block of information back in to a
readable state

1.3 Technology stack

The following table outlines the technology stack (frameworks, languages and development
tools) used to build the Housing Solutions mobile application. All technologies, frameworks
and languages will be the latest version released at the time of the build unless otherwise
stated.

React Native: React Native is an open-source mobile application framework used to
develop software for Apple and Android devices.

Expo: Expo a toolchain built around React Native to help you quickly start an app. It
provides a set of tools that simplify the development and testing of React Native apps and
arms you with the components of user interface and services that are usually available in
third-party native React Native components.

SQLite: SQLite is a software library that provides a relational database management system
with many similarities syntactically to MSSQL. This will be installed with each separate
installation and will be used to persist data between application start ups.

Redux: Redux is an open-source JavaScript library for managing application state during
application operation. It will be used to persist data between screens etc. This will be used in
conjunction with SQLite.

NodeJS: Node.js is an open-source, cross-platform, back-end JavaScript runtime
environment that runs on the V8 engine and executes JavaScript code outside a web
browser. React native has a dependency on NodeJS.

Visual studio code: An integrated development environment (IDE) used to develop the
application.

Umbraco: Umbraco is an open-source content management system platform for publishing
content on the World Wide Web and intranets. Currently Housing Solutions web portal is
running version 7.15.4 assembly: 1.0.7381.11453.

Umbraco API: An application programming interface built into Umbraco to expose
Umbraco specific services such as portal authentication. This API will be exposed to the
installed version of the mobile application so that we can utilise current portal
membership.

Testflight - Apples testing environment for new applications

Edison - Prodo’s AI voice recognition software

1.4 Target devices & viewports

Due to the enormous amount of mobile devices on the market, we will design the user
interface to target a specific set of viewports as opposed to specifying the device models the
application is compatible with (NB this list below may increase during the build if a particular
viewport is found not to be catered for). The application interface will be responsive to the
viewports outlined below and will universally cover both IOS and Android devices. The table
also highlights a selection of devices that fall into the viewport range, building the app user
interface to cover this range will maximise device compatibility.

Height Width Devices

926 414 iPhone 12 Pro Max

919 412 OnePlus 9 Pro

896 414 iPhone 11 Pro Max, iPhone XR

883 412 Samsung Galaxy Note20 Ultra

892 412 Samsung Galaxy A52

869 412 Samsung Galaxy Note 10+, Google Pixel 4 XL, Samsung Galaxy Note 10, Galaxy
A40

853 480 Samsung Galaxy Note 5,

854 384 Samsung S21 Ultra Samsung S21 Plus , Samsung S20+

851 393 Google Pixel 4a

846 414 iPhone XS Max, iPhone 11

846 412 Samsung Galaxy Note 9, Google Pixel 3 XL

844 390 iPhone 12, iPhone 12 Pro

830 393 Google Pixel 4

823 412 Google Pixel 2 XL

812 375 iPhone XS, iPhone X

808 393 Google Pixel 3a

786 393 Google Pixel 3

780 360 iPhone 12 Mini

740 360 Samsung Galaxy S9+, Samsung Galaxy S9, Samsung Galaxy S8+

736 414 iPhone 8, 7, 6s Plus, Nexus 5X, Google Pixel, One Plus 3

732 412 Google Pixel XL

731 411 Nexus 6P

667 375 IPhone 6, 6s, 7, 8

640 360 LG G5, Samsung Galaxy S7 Edge, Samsung Galaxy S7

598 320 iPhone SE, iPhone 5s, 5c, 5

1.5 Operating system versions
The application will be developed and released for both IOS and Android and will be
compatible for the following operating system versions. Please note that this list includes
operating systems that are available at the time of development, future versions of these
operating systems are not included with this build.

Operating System Version Support Current Version (05/21)

IOS 11 or newer 14.6

Android 5.0 (API 21) or newer 11.0

1.6 Testing
There are over 1500 models of Android phones in use today and around 24 different iPhone
models so how do we write test plans to cover the majority of these devices? Obviously it
would be impossible to physically test on all of these models! In order to achieve a larger
compatibility window we will use the data outlined in the previous sections, 1.4 and 1.5.

Through a combination of the large cross section of viewport dimensions (1.4) and the
stipulated compatible operating systems (1.5) we will perform user functionality tests on
simulators/Emulators and physical devices that fall within the our outlined criteria. Android
emulation will be done using Android Studio and IOS simulation will be done using XCode.
Although it would be nearly impossible to test the application on every single device type, we
aim to get a high compatibility percentage and will ensure that it operates as expected on the
most popular current smartphones.

Top 8 device models as of May 2021

● Apple iPhone 12.
● Samsung Galaxy S21 Ultra.
● Samsung Galaxy S21 / S21 Plus.
● Apple iPhone 12 Pro Max.
● Apple iPhone 12 mini.
● Samsung Galaxy Note 20 Ultra.
● OnePlus 9.
● Samsung Galaxy A52

The way applications are user tested differs between Apple and Google and both require us
to set up specific testing pipelines that conform to the guidelines of each company.

User testing on IOS

The process outlined by Apple is quite strict and will require us to set up the following items
in order to roll the app out to select users for testing.

● A valid IOS developers licence

● An app store connect account which includes TestFlight
● App delivery mechanism - IOS Transporter

Tester user requirements:

● A valid Apple store account
● An iPhone
● TestFlight app (free app found on the app store)

Test users are added to the test group in TestFlight, when the app is marked as ‘ready for
testing’ each test user receives an email with a link inviting them to the test group, after
accepting the T&C’s they will then be able to install the app via TestFlight. The app will
remain installed and fully functional for 90 days after installation. Please note an application
in test does not require Apple approval, however this WILL be a requirement to be launched
to the live store.

User testing on Android

The pre release user testing process from Google is very similar to the one from Apple with
a few minor differences. No developer licence is required and no specific technology is
required to deploy the test application to the Google Play Store. The following is required:

● A Google play developer account to be created

Tester user requirements:

● No special software is required

Test users are added to the test group in the developers console, when the app is marked as
‘ready for testing’ each test user receives an email with a link inviting them to the test group,
after accepting the T&C’s they will then be able to install the app via the Google Play Store.
The app will remain installed and fully functional until it is published to the live store or until
the test version is pulled from the developer console. Please note an application in test does
not require Google approval, however this WILL be a requirement to be launched to the live
store.

1.7 Accessibility

TBC - requires designs to complete

2. App Stores & Deployment
Both app stores (Apple & Google) follow a similar process to get your app initially approved
before it is publicly available. As well as the app passing an internal security check and code
test we are all required to provide all of the application listing information, screenshots and
data. It is not possible to submit an application for approval without providing this
information.

After the app is approved we can then release the application to the stores and it will be
available publicly for download. After this initial release there will be a requirement for
updates, patches and new feature functionality to be deployed. If a new piece of functionality
contains a lot of new code it may require approval again from the store so it will need to be
taken into account as the approval process can take anything from a few hours to a few
days.

Users who already have the application installed on their phone will not be required to
re-install it after every new release the app stores take care of this. After a new application
version is published to the store it will automatically update on all target devices before the
app is used again. Please note that the user will be required to log back into the app after it
has updated.

3. APIs
APIs will be required on various screens/sections of the app to request or send data to
Housing Solutions internal 3rd party systems. These systems manage tenant information,
payments and repairs scheduling.

Housing Solutions already have an exiting web based portal was built by Prodo the code
base for this project already contains API integrations for the following systems:

❖ Capita Open Housing - For tenant information and message centre
❖ Capita payment portal - For rent payments
❖ Civica Servitor - Handles all requests for raising and managing repair schedules
❖ Documotive - Document management (NB not required for this version of the app)
❖ Microsoft Cognitive Services - Image and speech recognition
❖ Umbraco Members API - Registration, authentication and forgotten password
❖ Umbraco Content API - News & Media feed

We will establish a machine to machine connection between the app and the above APIs,
this will be achieved through the use of a bearer token and will happen automatically when a
user logins into the app.

The above APIs will then surface tenant, payment and repairs data where required, this will
be explored in more detail on a screen by screen basis in section 4 of this document,
screens & Features.

The Umbraco members API will also be utilized by the app, this will handle all of the
authentication features that the app will require specifically the following processes:

● Logging into the app
● Registry and sign up if they’re not already a portal user
● Password reset

Please note that in order to access the APis via the app the current portal code base will
require modification to expose the APIs securely over HTTPS.

4. Screens & Features
The following section will give a functional explanation of the features and operations of each
screen. Please note that this may change depending on the output of the designs.

4.1 Core elements

4.2 Login / Forgotten password

Dependency Description

An internet connection either by WiFi or mobile data is required for
authentication. Login will not be possible without it

The Umbraco member service API is used to authenticate the user

Screen functionality overview

Components

Description

4.3 Sign up / Register

Dependency Description

An internet connection either by WiFi or mobile data is required for
authentication. Registry will not be possible without it

The Umbraco member service API is used to authenticate the user

Screen functionality overview

Components

Description

4.4 Splash / Load Screen

Screen functionality overview

Components

Description

4.5 Home Screen (dashboard)

Dependency Description

An internet connection either by WiFi or mobile data is required for
authentication. TBC

Although the majority of data on this screen will come from the SQLite database,
some data will be powered by API’s. This is TBC

● Capita open housing
● Umbraco content service

Screen functionality overview

Components

Description

4.6 News & Media feed

Dependency Description

An internet connection either by WiFi or mobile data is required for
authentication. TBC

Although the majority of data on this screen will come from the SQLite database,
some data will be powered by API’s. This is TBC

● Umbraco content service

Screen functionality overview

Components

Description

4.7 Rent Transactions (Payment history)

Dependency Description

An internet connection either by WiFi or mobile data is required for
authentication. TBC

Historic transactions will be sorted in the local database however it will be
necessary to make calls to the below API to look for the latest transactions. This
is TBC

● Capita open housing

4.8 Make a Payment

Dependency Description

An internet connection either by WiFi or mobile data is required for
authentication. TBC

● TBC

Screen functionality overview

Components

Description

4.9 Repairs Diagnosis

4.9.1 AI Image diagnosis

● TBC

4.9.2 Edison (AI speech recognition)

● TBC

4.9.3 Traditional diagnosis method

4.10 Scheduling a Repair

4.11 Forms

4.11.1 Feedback

The feedback back form is hosted on a portal web page and displayed in a dedicated screen
using a webview control. Submitting the form sends the tenant reference in the query string

4.12 Web Chat Screen

4.13 Message Centre Screen

5. SQLite Database
In order to persist data between application shutdowns (app thread closure on the device)
we will use a SQLite database to store data long term. The tables in this database can be
read from and written to, we’ll go through this database structure in the next section of this
document. Please note that this data will be purged from the device if the application is
uninstalled and certain fields will also be encrypted to prevent database tampering, these
fields will be highlighted.

5.1 Table structure
The following lists outline the tables that will be present in the SQLite database, each list will
stipulate the fields contained in the database table, the field data type and whether or not the
field is encrypted. Please note that we will not need to store all of the tenant data that the
web portal contains only the data that the application requires to operate. Reasons for this
are:

● So that the application can operate to some degree offline
● To reduce the amount of API calls/repeat API calls (and potential mobile data

consumption) that application needs to make
● To store non sensitive application related data

TBC - Data outlined below may be subject to alteration but must be defined and agreed on
before build start.

5.1.1 System settings

The settings table contains application specific information such as temporary authentication
tokens and accessibility preferences.

Field name Data type Is encrypted

id integer no

token text yes

accessibilitySettings text (json blob) no

5.1.2 Tenant

The account table contains application specific information about the tenancy, the tenant and
any other household members. A significant portion of the fields in this table are encrypted
due to the sensitive nature of the information.

Field name Data type Is encrypted

id integer no

name text yes

dob text yes

email text yes

addressLine1 text yes

addressLine2 text yes

addressLine3 text yes

postcode text yes

tenancyReference text yes

agreementStartDate integer(older than 01/01/1970?) no

agreementStartDate integer no

householdMembers text yes

mobileTelno text yes

homeTelno text yes

workTelno text yes

estateInspectionOfficers text no

generalContacts text yes

dateCreated integer no

dateUpdated integer no

5.1.3 Transactions

The transaction table contains rent payment records, the data here is not directly linked to a
tenant so encryption is not required. This table is used to retrieve and display historic rent
payments locally on the device rather than making external API calls each time the data is
requested. If the user requests older payment records that are not stored locally on the
application then an API request will be required to retrieve this data.

Field name Data type Is encrypted

id integer no

summary text no

amount integer no

transactionDate integer no

currentBalance integer no

dateCreated integer no

5.1.4 Repairs history

The repairs history table stores history repairs for the tenant. If the repairs are not found
locally then an API call will be made to retrieve the data from Capita. None of the data in this
table is GDPR sensitive so field encryption is not required.

Field name Data type Is encrypted

id integer no

repairId (sor code) text no

title text no

statusType integer (enum value) no

repairType (personal / communal) integer (enum value) no

dateRaised integer no

targetCompletionDate integer no

dateUpdated integer no

dateClosed integer no

5.1.5 Message centre

The message centre table stores the closed message communications that are powered by
the Capita API. These conversations are stored locally for fast historic retrieval. All current
active conversations are not stored here until they are closed. Some of the fields that may
contain sensitive information will be encrypted for security purposes, specifically the
description and notes fields.

Field name Data type Is encrypted

id integer no

reference text no

type text no

completionDate integer no

dateCreated integer no

description text yes

notes Text (json blob) yes

5.2 Field encryption

All fields that have been marked as sensitive will be encrypted in the SQLite database to
ensure data security. We will use an AES 256 encryption.

6. Wifi / Internet Connection
Regular checks will be done on screens that require an internet connection, if no connection
is found a popup will appear forming the user that they must connect to the internet to fully
utilise the functionality of that screen.

7. Push Notifications
The following section will give a functional explanation of how we will achieve push
notifications for the application. IOS and Android provide their own services to handle push
notifications, APNs (Apple Push Notification service) and FCM (Firebase Cloud Messaging).
React Native Expo does provide a tool that wraps the integration of both providers into one
single API that we can target however we still need to write the code to integrate with the
Expo push notification API. We also need to write a custom Umbraco interface which allows
a CMS user to target and send push notifications to either groups of tenants or individuals.
Below is a diagram which illustrates the push notification workflow.

7.1 Push notification workflow

1. A user with the correct level of permissions logs into the umbraco CMS and
navigates to the push notification tab in the members section.

2. The user selects the type of push notification (NB types listed in the next section)
they wish to send from a drop down list.

3. The user can then select who they wish to send the push notification to, an individual
or a group.(NB groups are listed in the next section)

4. The user then adds a title for the push notification, this can be up to 64 characters in
length.

5. User then adds the message body text, this can be up to 240 characters in length
6. Finally the user presses the ‘Send’ button, a confirmation alert pops up to confirm

that they’re happy with the message, user confirms and the push notifications are
sent.

7. If the user declines the confirmation the push notifications are not sent.

Upon clicking send a JSON object containing the data of the push notification campaign will
be created and saved to a location (location TBC) to act as a send receipt. Please note that
custom push notifications can not be stored in Umbraco for later use. If the user navigates
away from the push notifications tab in Umbraco before clicking send the message will be
lost.

7.2 Umbraco push notification tool
The Umbraco push notification tool is a custom built page in the members section of the
CMS. The look and feel of it will remain consistent with Umbraco so no additional design
time will be required. The interface essentially is a multi-step form which allow a CMS user to
do the following:

● Select the type of push notification, payment alert, event, custom etc
● Select a distribution list, with a group or individual(s)
● Create a title (up to 64 characters)
● Create the message body (up to 240 character)

Below is a wireframe illustrating the layout of the push notification tool

7.3 Push notification types
The following list is to be confirmed (TBC) and the push notification type listed below may
change.

● Custom notification - a fully customisable push notification. The title and content
body are set by the CMS user and the distribution list can be anything from a single
individual, custom list of individuals or a predefined group. This push notification type
is manually triggered.

● Repair reminder - A pre-set notification with a fixed message and title and a variable
date which notifies the recipient of a scheduled repair engineer visit. This notification
is triggered automatically. Automatic notifications are to be triggered from a
predefined list that we can poll on a regular basis. The list and trigger frequency are
to be confirmed (TBC).

● Communal repair - A notification which alerts all recipients that belong to a
particular distribution group that a neighbour has already raised a communal repair.
This notification is triggered manually and achieved by creating a custom push

notification and sending it to a specific distribution group. This may require further
scoping (TBC).

● Operative enroute - A pre-set notification with a fixed message which notifies the
recipient that an engineer is on the way. This notification would be automatically
triggered. The mechanism to achieve this notification type requires further discussion
(TBC).

● Rent due - A pre-set notification with a fixed message and title which notifies the
recipient that their rent payment is due. This notification is triggered automatically.
Automatic notifications are to be triggered from a predefined list that we can poll on a
regular basis. The list and trigger frequency are to be confirmed (TBC).

● Payment received - A pre-set notification with a fixed message and title which
notifies the recipient that a payment has been received. This notification is triggered
automatically. Automatic notifications are to be triggered from a predefined list that
we can poll on a regular basis. The list and trigger frequency are to be confirmed
(TBC).

7.4 Member groups & distribution lists
In the previous section (7.1) we outlined the push notification workflow, step 3 of this
workflow outlines how a CMS user can select an individual or distribution group to send the
push notification to. Please note that in order to achieve distribution groups we will need to
add some additional information to the member objects in Umbraco which allow us to group
individuals, this could be by area or building but is TBC.

The recipient selection area allows a CMS user to do the following:

● Select one or more tenants and create a custom list of recipients
● Select a distribution group, this could be by area or building. This will require adding

a group tenancies code or estate code to the Umbraco member objects so that we
can programmatically select tenants that fall into a particular category

7.5 Event triggers
System driven push notifications will require custom event triggers, this could be us polling a
predefined list of tenants or some other mechanism. Further discussion is required to figure
out what these triggers are and the mechanism to poll them. This is TBC.

8. Payment Gateway
This is TBC

9. Message Centre
The message center is a current feature on the web portal, it allows a staff member to
instigate a two way conversation with a tenant. This functionality is powered by an API which
is provided by Capita. There are two main functions that the API provides, one to initialise
the conversation and one to update the thread until it is resolved. Complete conversions are
archived below active ones so that tenants are able to revisit the outcomes of previous
message threads.

The application version of the message centre will operate in much the same way and will
also be reliant on the same Capita API calls that the web portal uses.

9.1 Active threads
All active threads are directly retrieved from the API endpoint; each action will require an API
call to fetch or send data to the thread. If a message thread is started but not completed in
the initial sitting, the partial message thread will be loaded in from the API when the tenant
resumes the conversation.

9.2 Archived threads
After a message thread conversation is completed an API call will be triggered to mark the
message as resolved and close the conversation. At this point, the entire message thread
will be serialised into a JSON object and saved to the SQLite database ‘message centre’
table. A tenant can then always revisit the conversation to review the outcome of an action
without the need for that conversation to be retrieved from Capita API. This method provides
convenient offline storage for all history message threads.

10. Web Chat
The web chat (chatbot) will be hosted on the main website in a dedicated responsive
webpage. The web chat page will then be rendered in a react native webview control which
is set to fill the screen size (see 1.4 Target devices and viewports), the responsive web page
will then naturally adjust to the screen view port. Please note that all web chat functionality is
handled entirely in the web page and not the application screen.

